Domain decomposition methods are, alongside multigrid methods, one of the dominant paradigms in contemporary large-scale partial differential equation simulation.
In this talk, I will present a lightweight implementation (HPDDM, https://github.com/hpddm/hpddm) of theoretically and numerically scalable domain decomposition preconditioners in the context of overlapping and substructuring methods. A broad spectrum of applications will be covered, ranging from the scalar diffusion equation to Maxwell's equation, and including incompressible linear elasticity. Numerical results with hundreds of processes will be provided, clearly showing the effectiveness and the robustness of the proposed approaches.
HPDDM is currently interfaced with two finite element libraries, FreeFem++ (http://www.freefem.org/ff++/) and Feel++ (http://www.feelpp.org/), which allows for quick prototyping and throughout testing.